Перевод: со всех языков на русский

с русского на все языки

электрическое сопротивление изоляции

  • 1 electrical insulation resistance

    English-Russian dictionary of program "Mir-Shuttle" > electrical insulation resistance

  • 2 insulation resistance

    1. электрическое сопротивление изоляции конденсатора
    2. сопротивление изоляции

    61. Электрическое сопротивление изоляции конденсатора

    D. Isolationswinderstand

    E. Insulation resistance

    F. Résistance d'isolement

    Электрическое сопротивление конденсатора постоянному току

    Источник: ГОСТ 21415-75: Конденсаторы. Термины и определения оригинал документа

    3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли.

    Источник: ГОСТ Р 51522.2.4-2011: Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Часть 2-4. Частные требования к устройствам мониторинга изоляции и определения мест нарушения изоляции. Испытательные конфигурации, рабочие условия и критерии качества функционирования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > insulation resistance

  • 3 résistance d'isolement

    Франко-русский словарь нормативно-технической терминологии > résistance d'isolement

  • 4 Isolationswinderstand

    Немецко-русский словарь нормативно-технической терминологии > Isolationswinderstand

  • 5 insulativity

    Универсальный англо-русский словарь > insulativity

  • 6 isolation

    1. изоляция

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > isolation

  • 7 isolement (2)

    1. изоляция

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > isolement (2)

  • 8 Isolation (2)

    1. изоляция

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Isolation (2)

  • 9 Isolierung

    1. изоляция (процесс)
    2. изоляция

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

     

    изоляция (процесс)

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    insulation (process)
    The process of preventing or reducing the transmission of electricity, heat, or sound to or from a body, device, or region by surrounding it with a nonconducting material. (Source: CED)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Isolierung

  • 10 insulation

    1. изоляция
    2. изолирование

     

    изолирование

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > insulation

  • 11 insulativity

    1. изолированность; удельное сопротивление изоляционного материала
    2. удельное объемное электрическое сопротивление изоляции

    English-Russian big polytechnic dictionary > insulativity

  • 12 electrical insulation resistance

    Универсальный англо-русский словарь > electrical insulation resistance

  • 13 electric resistance

    The English-Russian dictionary general scientific > electric resistance

  • 14 impedance

    1. полное электрическое сопротивление конденсатора
    2. полное электрическое сопротивление
    3. полное сопротивление магнитоуправляемого контакта
    4. импеданс
    5. волновое сопротивление

     

    волновое сопротивление
    импеданс

    Сопротивление среды передачи распространению электромагнитных волн. Определяется геометрией проводников и диэлектрическими свойствами изоляции. Измеряется в омах (ISO/IEC 11801).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    волновое сопротивление
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

     

    импеданс
    волновое сопротивление

    Полное сопротивление среды распространению электромагнитных волн.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    полное сопротивление магнитоуправляемого контакта
    Электрическое сопротивление переменному току между выводами магнитоуправляемого кон такта при замкнутых контакт-деталях
    [ ГОСТ 17499-82]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

     

    полное электрическое сопротивление конденсатора
    Ндп. импеданс
    Электрическое сопротивление конденсатора переменному синусоидальному току.
    [ ГОСТ 21415-75]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    67. Полное электрическое сопротивление конденсатора

    Ндп. Импеданс

    D. Scheinwiderstand

    E. Impedance

    F. Impédance

    Электрическое сопротивление конденсатора переменному синусоидальному току

    Источник: ГОСТ 21415-75: Конденсаторы. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > impedance

  • 15 self contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self contained cable

  • 16 self-contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained cable

  • 17 self-contained pressure cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained pressure cable

  • 18 resistance

    2. противодействие, стойкость, устойчивость

    resistance to anti-icing fluid стойкость к антиобледенительной жидкости

    resistance to brittle fracture сопротивление хрупкому разрушению

    resistance to chemical attack 1) сопротивление к химической коррозии 2) стойкость к химической коррозии

    resistance to chemical corrosion 1) стойкость к химической коррозии 2) сопротивление к химической коррозии

    resistance to compression 1) сопротивление сжатию 2) предел прочности на сжатие

    resistance to relaxation стойкость к релаксации

    resistance to rupture прочность на разрыв, временное сопротивление разрыву

    resistance to softening сопротивление размягчению

    resistance to sulfidation сопротивление сульфидированию

    resistance to vibration вибростойкость

    resistance to water водостойкость

    resistance to weathering сопротивление воздействию погодных условий, атмосферостойкость

    ablation resistance сопротивление абляции [уносу массы], абляционная стойкость

    abrasion resistance сопротивление истиранию, прочность на истирание, абразивная стойкость, износостойкость

    abrasive resistance абразивная стойкость, сопротивление истиранию, прочность на истирание, износостойкость

    acid resistance кислотостойкость, кислотоупорность

    acoustic resistance акустическое сопротивление

    acoustic fatigue resistance сопротивление акустической усталости

    aerodynamic resistance аэродинамическое сопротивление

    age resistance сопротивление старению

    aging resistance сопротивление старению

    alkali resistance щёлочестойкость, щёлочеупорность

    arc resistance 1) дугостойкость 2) искростойкость

    ascent heating resistance сопротивление нагреву при наборе высоты

    atmospheric-aging resistance сопротивление атмосферному старению

    ballistic impact resistance стойкость к баллистическому удару

    bending resistance сопротивление изгибу

    benzine resistance бензиностойкость

    buckling resistance сопротивление продольному изгибу

    chemical resistance стойкость к химическому воздействию, химическая стойкость [инертность]

    chemical-corrosion resistance сопротивление химической коррозии

    cohesive resistance прочность сцепления

    cold resistance хладостойкость, холодостойкость, морозостойкость

    corona resistance короностойкость

    corrosion resistance коррозионная стойкость

    corrosive resistance коррозионная стойкость

    corrosion-fatigue resistance стойкость к коррозионной усталости

    corrosion stress cracking resistance сопротивление коррозионному растрескиванию под напряжением

    cracking resistance 1) стойкость к растрескиванию 2) сопротивление растрескиванию

    creep resistance сопротивление ползучести, ползучестойкость

    cutting resistance 1) сопротивление резанию 2) сопротивление порезам

    dent resistance 1) сопротивление вдавливанию 2) инденторная твёрдость

    dielectric resistance 1) сопротивление диэлектрика 2) сопротивление изоляции

    diffusion resistance сопротивление диффузии

    diffusional resistance сопротивление диффузии

    distortion resistance сопротивление деформации

    elastic resistance упругое сопротивление

    electrical resistance электрическое сопротивление, электросопротивление

    electrochemical resistance электрохимическая стойкость

    environmental resistance 1) стойкость к окружающим условиям 2) сопротивление воздействию окружающей среды

    erosion resistance 1) сопротивление эрозии 2) эрозионная стойкость

    erosion-corrosion resistance эрозионно-коррозионная стойкость

    etch resistance сопротивление травлению

    fade resistance 1) сопротивление обесцвечиванию 2) стойкость к обесцвечиванию

    fading resistance 1) сопротивление обесцвечиванию 2) стойкость к обесцвечиванию

    failure resistance сопротивление разрушению

    fatigue resistance 1) сопротивление усталости 2) усталостная прочность

    fire resistance огнестойкость, огнеупорность, жаростойкость

    flame resistance огнестойкость, огнеупорность, жаростойкость

    fracture resistance сопротивление разрыву, стойкость к излому

    freeze resistance морозостойкость, морозоустойчивость

    frictional resistance сопротивление трения

    frost resistance морозостойкость, морозоустойчивость

    fuel resistance топливостойкость

    fungus resistance грибостойкость

    gamma-radiation resistance стойкость к гамма-излучению

    gas-corrosion resistance сопротивление газовой коррозии

    grease resistance маслостойкость, жиронепроницаемость

    heat resistance теплостойкость, жаростойкость, окалиностойкость

    heat-shock resistance 1) стойкость к тепловому [термическому] удару 2) сопротивление тепловому [термическому] удару

    high-temperature resistance стойкость к действию высоких температур, жаростойкость

    high-temperature oxidation resistance стойкость к окислению при высоких температурах

    humidity resistance влагостойкость

    hydraulic resistance гидравлическое сопротивление

    impact resistance ударная вязкость, сопротивление удару, ударопрочность

    indentation resistance 1) сопротивление вдавливанию 2) инденторная твёрдость

    insulation resistance сопротивление изоляции, изоляционная прочность

    kerosene resistance керосиностойкость

    light resistance светостойкость

    low-temperature resistance стойкость к низким температурам, морозостойкость, морозоустойчивость

    mechanical resistance механическое сопротивление

    mechanical fatigue resistance сопротивление механической усталости

    meteorite strike resistance стойкость к метеоритным ударам

    moisture resistance влагостойкость, влагоустойчивость

    oil resistance маслостойкость, маслоупорность

    oxidation resistance сопротивление окислению

    oxidation-erosion resistance окислительно-эрозионное сопротивление

    ozone resistance озоностойкость

    peel resistance сопротивление отслаиванию

    radiation resistance 1) стойкость к облучению 2) радиационная стойкость, сопротивление излучению

    rain-erosion resistance сопротивление дождевой эрозии

    rust resistance коррозионная стойкость

    salt-fog resistance стойкость к соляному туману

    salt-spray resistance стойкость к соляному туману

    salt-stress-corrosion resistance сопротивление солевой коррозии под напряжением

    scratch resistance 1) сопротивление царапанию 2) стойкость к царапанию 3) твёрдость по Моосу

    scuffing resistance 1) сопротивление истиранию 2) стойкость к истиранию

    shear resistance сопротивление сдвигу

    shock resistance сопротивление удару, ударопрочность

    short-term extreme-temperature resistance кратковременное сопротивление высоким температурам

    shrink resistance стойкость к усадке

    skin resistance сопротивление поверхностного трения ( обшивки)

    slip resistance 1) сопротивление скольжению 2) сопротивление сдвигу

    solvent resistance стойкость к растворителям

    sonic-fatigue resistance сопротивление звуковой усталости

    spalling resistance 1) сопротивление отслаиванию 2) сопротивление растрескиванию

    specific resistance удельное сопротивление

    stain resistance 1) коррозионная стойкость 2) сопротивление травлению

    strain resistance сопротивление деформации

    stress-corrosion resistance сопротивление коррозии под напряжением

    stress-cracking resistance 1) сопротивление растрескиванию под напряжением 2) стойкость к растрескиванию под напряжением

    stress-rupture resistance сопротивление разрушению под напряжением

    sunlight resistance 1) сопротивление инсоляции [облучению солнцем] 2) стойкость к действию солнечных лучей

    swelling resistance сопротивление набуханию

    tear resistance сопротивление раздиру

    thermal resistance 1) термическое [тепловое] сопротивление 2) теплостойкость

    thermal contact resistance термосопротивление контактов

    thermal environmental resistance жаропрочность

    thermal-fatigue resistance сопротивление термической усталости

    thermal-shock resistance стойкость к тепловому [термическому] удару, сопротивление тепловому [термическому] удару

    thermal-shock spalling resistance сопротивление растрескиванию при тепловом ударе

    thermal-stress resistance сопротивление термическим напряжениям

    thermal-stress fatigue resistance сопротивление усталости под термическим напряжением

    torsional resistance сопротивление кручению [скручиванию]

    twisting resistance сопротивление кручению [скручиванию]

    ultimate resistance временное сопротивление, предел прочности

    ultraviolet radiation resistance стойкость к ультрафиолетовому излучению [к действию ультрафиолетовых лучей]

    unnotched impact resistance ударная вязкость ненадрезанного образца

    vibration resistance вибростойкость

    viscous resistance вязкое сопротивление

    volume resistance объёмное сопротивление

    water resistance водостойкость, водоупорность, водонепроницаемость

    wear resistance износостойкость, сопротивление износу, износоустойчивость

    weathering resistance погодостойкость, атмосферостойкость

    English-Russian dictionary of aviation and space materials > resistance

  • 19 neutral grounding

    1. зануление
    2. заземление нейтрали

     

    заземление нейтрали

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > neutral grounding

  • 20 neutral earthing

    1. зануление

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > neutral earthing

См. также в других словарях:

  • электрическое сопротивление изоляции — электрическое сопротивление изоляции; сопротивление изоляции; сопротивление Величина, обратная электрической проводимости изоляции …   Политехнический терминологический толковый словарь

  • Электрическое сопротивление изоляции — 10.2. Электрическое сопротивление изоляции , МОм Примечание. Основные показатели качества набраны жирным шрифтом. 1.2. Показатели качества изделий, приведенные в табл. 1, могут быть дополнены показателями, которые отражают особенности… …   Словарь-справочник терминов нормативно-технической документации

  • электрическое сопротивление изоляции конденсатора — Электрическое сопротивление конденсатора постоянному току. [ГОСТ 21415 75] Тематики конденсаторы для электронной аппаратуры EN insulation resistance DE Isolationswinderstand FR résistance d isolement …   Справочник технического переводчика

  • Электрическое сопротивление изоляции конденсатора — 61. Электрическое сопротивление изоляции конденсатора D. Isolationswinderstand E. Insulation resistance F. Résistance d isolement Электрическое сопротивление конденсатора постоянному току Источник: ГОСТ 21415 75: Конденсаторы. Термины и… …   Словарь-справочник терминов нормативно-технической документации

  • электрическое сопротивление изоляции термометра сопротивления — 3.14. электрическое сопротивление изоляции термометра сопротивления : Электрическое сопротивление между внешними выводами ТС и защитным корпусом, а также между цепями ТС с двумя или более ЧЭ при комнатной или другой заданной температуре,… …   Словарь-справочник терминов нормативно-технической документации

  • электрическое сопротивление изоляции термопреобразователя сопротивления — 3.14 электрическое сопротивление изоляции термопреобразователя сопротивления: Электрическое сопротивление между внешними выводами термопреобразователя сопротивления и защитным корпусом, а также между цепями термопреобразователя сопротивления с… …   Словарь-справочник терминов нормативно-технической документации

  • удельное объёмное электрическое сопротивление изоляции — savitoji tūrinė izoliacijos varža statusas T sritis radioelektronika atitikmenys: angl. insulation volume resistivity; insulativity vok. spezifischer Isolationsvolumenwiderstand, m rus. удельное объёмное электрическое сопротивление изоляции, n… …   Radioelektronikos terminų žodynas

  • сопротивление изоляции — электрическое сопротивление изоляции; сопротивление изоляции; сопротивление Величина, обратная электрической проводимости изоляции …   Политехнический терминологический толковый словарь

  • сопротивление изоляции электрода — Электрическое сопротивление изоляции данного электрода относительно всех других электродов, соединенных вместе …   Политехнический терминологический толковый словарь

  • сопротивление изоляции — 3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) — 36. Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) Сопротивление изоляции Электрическое сопротивление постоянному току изоляции обмотки управления высокочастотного выключателя (переключателя) Источник: ГОСТ …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»